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ABSTRACT 

Time series data often arise when monitoring hydrological processes. Most of the hydrological data are time 

related and directly or indirectly their analysis related with time component. Time series analysis accounts 

for the fact that data points taken over time may have an internal structure (such as autocorrelation, trend or 

seasonal variation) that should be accounted for. Many methods and approaches for formulating time series 

forecasting models are available in literature. This study will give a brief overview of auto-regressive 

integrated moving average (ARIMA) process and its application to forecast the river discharges for a river.  

The developed ARIMA model is tested successfully for two hydrological stations for a river in US. 

 

Keywords: Time Series Analysis, ARIMA Model, Hydrological Process, Autocorrelation, Seasonal 

Variation.  

 

INTRODUCTION 

Auto-Regressive Integrated Moving Average 

(ARIMA) method is widely used in field of time 

series modeling and analysis. These models were 

described by Box and Jenkins (1976) and further 

discussed by Walter (Chatfield, 1996). The Box-

Jenkins approach in hydrological modeling is used 

by several researchers. Chew et al. (1993) 

conducted a comparison of six rainfall-runoff 

modeling approaches to simulate daily, monthly 

and annual flows in eight unregulated catchments. 

Langu (1993) used time series analysis to detect the 

changes in rainfall and runoff patterns. Kuo and 

Sun (1993) used the time series model for ten days 

stream flow forecast and generate synthesis 

hydrograph caused by typhoons in Tanshui River in 

Taiwan. Naill and Momani (2009) used the time 

series analysis for rainfall data in Jordan.  

This paper is aimed to show the usefulness of this 

popular technique ARIMA for a typical case study.  

 

ARIMA MODEL 

Trend and prediction of time series can be 

computed by using ARIMA model. ARIMA (p,d,q) 

model is a complex linear model. In statistics, 

normally in time series analysis, ARIMA model is 

generalization of autoregressive moving average 

(ARMA) models, sometimes called Box-Jenkins 

models after the iterative Box-Jenkins 

methodology. Given a time series of data Xt, the 

ARMA model is a tool for understanding and, 

perhaps, predicting future values in this series. The 

model consists of two parts, an autoregressive (AR) 

part and a moving average (MA) part. And that of 

in ARIMA model the third part integrated (I) 

included. The model is usually then referred to as 

the ARIMA (p,d,q) model where p is the order of 

the autoregressive part, d is the order of non 

seasonal differences and q is the order of the 

moving average part. 

The notation AR(p) refers to the autoregressive 

model of order p, which can be written as: 

1

p

t i t i t

i

X c X 



    (1) 

where φ1,.., φp are the parameters of the model, c is 

a constant and εt is white noise. The constant term 

is omitted by many authors for simplicity.  

Similarly, the notation MA (q) refers to the moving 

average model of order q.  This can be written as: 

1

q

t t i t i

i

X     



    (2) 

 

Where the θ1,.. ,θq are the parameters of the model, 

μ is the expectation of Xt (often assumed equal to 

0), and the εt, εt-1, …, εt-q are the white noise error 

terms. The moving average model is a finite 

impulse response filter with some additional 

interpretation placed on it. While combing these 

two models, the ARMA (p,q) is obtained. 
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The error term  εt are generally assumed to be  

independent identically-distributed random 

variables sampled from a normal distribution with 

zero mean: εt ~ N(0,σ
2
) where, σ

2
 is the variance. 

Some researchers have used the equation in a lag 

operator form. In lag operator form, AR (p) model 

is given by- 

1

1 i

p

t i t t

i

L X X  


 
   
 

  (4) 

And MA(q) model is given by-  
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Where,  φ and θ are defined by the parameters 

containing inside the parenthesis of each model. 

Combining these models we can manipulate and 

write in the following form. 
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Assume that the polynomial of first term of above 

equation has a unitary root of multiplicity d. Then 

this equation can be updated including the 

difference term, which can be expressed as, 

d
dp
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An ARIMA (p, d, q) process expresses this 

polynomial factorization property, and is finally 

written as: 
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More precisely, the ARIMA (p, d, q) model can be 

written as: 

tqt

d

p ByBB  )()1)((   (9) 

The model while used with seasonal fluctuation, 

with seasonal length s, the process is called 

SARIMA (p, d, q)(P, D, Q)s, where  p, d, q  

represents the order of process AR, order of 

difference (I) and order of process (MA) for non 

seasonal part and P, D, Q, represents the order of 

seasonal process AR, order of seasonal difference 

and order of seasonal MA and s is the length of 

seasonal period.  

The general equation of SARIMA model is: 

t

s

Qqt

Dss

P

d

p BByBBBB  )()()1)(()1)(( 

 (10) 

Where, φp(B)  is auto regressive operator, θq(B)  is 

the operator of moving average; ΦP(Bs) is seasonal 

autoregressive operator, ΘQ(Bs) is seasonal 

operator of moving averages, εt is white noise. 

 

STATISTICAL TESTS FOR MODEL 

PERFORMANCE 

There are several statistical tests for model 

performance. In this study some of these tests are 

used which are easy to understand and use.  

 

Coefficient of Correlation 

A very important part of statistics is describing the 

relationship between two (or more) variables. One 

of the most fundamental concepts in research is the 

concept of correlation. If two variables are 

correlated, this means that it can use information 

about one variable to predict the values of the other 

variable. The coefficient of correlation is given by 

following equation. 

 







22 )()(

)()(

yyxx

yyxx
r

ii

ii  (11) 

Where, r is correlation coefficient; ix and iy are 

independent (observed) and dependent (predicted) 

variables and x and y  are their corresponding 

means. 

 

Root Mean Square Error 

The root mean square error (RMSE)) (also root 

mean square deviation (RMSD)) is a frequently-

used measure of the differences between values 

predicted by a model or an estimator and the values 

actually observed from the thing being modeled or 

estimated. RMSE is a good measure of accuracy. 

These individual differences are also called 

residuals, and the RMSE serves to aggregate them 

into a single measure of predictive power.  The 

mathematical form of RMSE is given by: 

 
N

yx
RMSE ii

2


  (12) 

Where N is total number of data set and other 

variables are same as earlier equation. These two 
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equations are used for the comparison of observed 

and predicted values. 

 

AIC and BIC criteria 

The two most commonly used penalized model 

selection criteria, the Akaike’s information criterion 

(AIC) and the Bayesian information criterion 

(BIC), are examined and compared for ARIMA 

model selection.  

 AIC - In general case, 

2 ln( / )AIC k n SSE n   (13) 

Where k is the number of parameters in the 

statistical model, n is the number of observations 

and SSE is square sum of error given by - 

2

1

n

i

i

SSE 


  (14) 

 BIC - In general BIC is given by-  

ln( ) ln( / )BIC k n n SSE n   (15) 

The minimum values of these AIC and BIC criteria 

give the better model performance. 

 

CASE STUDY DESCRIPTION 

Discharge Data 

For the application demonstration of ARIMA 

model, the time series daily discharge data two 

stations in Schuylkill River at Berne (Station no: 

01470500, Lat. 40
º
31'21'' and Long. 75

º
59'55'') and 

Philadelphia (Station no: 01474500, Lat. 39
º
58'04'' 

and Long. 75
º
11'20''), USA are taken. The 

catchments area of Berne station is about 919.45 

km
2
 and that of Philadelphia station is 4902.85 km

2
. 

This information was obtained from USGS website. 

The data from the period October 01, 2000 to 

September 30, 2006 were taken for both of the 

stations. Initial all six years data were taken for 

ARIMA model development and finally using model 

last one year data (October 01, 2006 to September 30, 

2007) were predicted for both the stations. Some of 

the statistical parameters for these sites are shown in 

Table 1 of the discharge data. The parameters μ, σ, 

σ/μ, Csk, Ckr, Xmax, Xmin are mean, standard deviation, 

variance, skew-ness, kurtosis, maximum and 

minimum values respectively. The discharge limits of 

Berne station are 2.13 to 972.01 m
3
/s

 
and that of 

Philadelphia station are 2.24 to 1484.94 m
3
/s. 

Table 1. The daily statistical parameters for Schuylkill River. 

Station Basin Area (Km
2
) μ σ σ/μ Csk Ckr Xmax Xmin 

Berne 01470500 

Philadelphia 01474500 

919.45 

4902.85 

22.09 

99.20 

33.90 

118.55 

1.53 

1.195 

12.18 

4.54 

270.59 

33.27 

972.01 

1484.94 

2.13 

2.24 

 

Development of ARIMA Models 

From the time series plot for the given data (figure 

1), it can be observed that there is no seasonality for 

daily data. In fact, it is very difficult to fix the 

seasonality for daily data and due to the large span 

of time (365 days), it is unreliable too. So, the 

model formulation has done without seasonality. 

The ARIMA models for the both stations are 

developed by using SPSS. Initially, the several 

models were tested based on the AIC and BIC 

criterion. The AIC and BIC values for few models 

for these are given in the following Table 2. 

  

Table 2. The AIC and BIC values for some testing ARIMA models for  

Berne data and Philadelphia data. 

  ARIMA -  Berne Data 

  (1,0,0) (1,1,0) (2,0,0) (1,0,1) (1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,2,2) 

AIC 23425 23772 23425 23424 23413 23411 23798 23810 23939 

BIC 23437 23784 23442 23442 23431 23438 23805 23813 23968 

  ARIMA – Philadelphia Data 

  (0,1,0) (0,2,0) (1,0,0) (1,1,0) (1,1,1) (2,11) (2,2,1) 

AIC 29897 31744 29568 29896 29544 29502 29772 

BIC 29903 31750 29580 29908 29561 29525 29796 
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From Table 2, it can be judged that on the principle 

of AIC and BIC test, ARIMA (1, 1, 2) is suitable 

for Berne station and ARIMA (1, 1, 2) is suitable 

for Philadelphia station.  

However while we observed the correlation 

matrix of the ARIMA parameters for Berne 

Station from Table 3, the parameters MA(1) and 

MA(2) has very high correlation approaching to 

unity. So that their effects in ARIMA model are 

negligible and we can reduce this MA 

parameter. Then the ARIMA (1, 1, 1) is 

proposed for the further analysis even though 

ARIMA (1, 1, 2) has fairly less AIC and BIC 

values. The correlation matrix and parameters 

for final model for the Berne station are given in 

the following Table 4. 

 

Table 3. The correlation matrix for parameters of Berne data. 

ARIMA (1,1,2) 
Non-Seasonal Lags 

Constant φ1 θ1 θ2 

Non-Seasonal Lags φ1 1.0 .737 -.716 0 

θ1 .737 1.00 -.993 0 

θ2 -.716 -.993 1.0 0 

Constant 0 0 0 1.0 

 

Table 4. The correlation matrix and final parameters for Berne Station. 

a. The correlation matrix   b. The final parameters  

ARIMA (1,1,1) 

Non-Seasonal 

Lags 

Constant φ1 θ1 

Non-Seasonal 

Lags 
φ1 1.0 .320 0 

θ1 .320 1.0 0 

Constant 0 0 1.0 
 

ARIMA (1, 1, 1) Estimates Std Error 

Non-Seasonal Lags φ1 .698 .015 

  θ1 .991 .003 

Constant -.001 .014 
 

 

Similarly, for Philadelphia station, AIC and BIC 

values for some models, correlation matrix for 

selected model and final ARIMA model parameters 

are given in Table 5. 

 

Table 5. The correlation matrix and final parameters for Philadelphia data. 

a. The correlation matrix b. The final parameters  

ARIMA (2,1,1) 
Non-Seasonal Lags 

Constant φ1 φ2 θ1 

Non-

Seasonal 

Lags 

φ1 1.0 -.598 .253 0 

φ2 -.598 1.0 .214 0 

θ1 .253 .214 1.0 0 

Constant 0 0 0 1.0 
 

ARIMA (2,1,1) Estimates Std Error 

Non-Seasonal 

Lags 
φ1 .787 .020 

  φ2 -.141 .020 

  θ1 .968 .006 

Constant -.009 .140 
 

 

As discussed in earlier, for ARIMA (1, 1, 1), the 

general equation can be reduced as: 

1

1 1( )(1 ) ( )t tB B y B                   (16) 

While substituting the model parameters in the 

above equation and simplify it, we get the final 

model for Berne station as: 

1 2 11.698 0.698 0.991 0.001t t t ty y y e        (17) 

Similarly, for ARIMA (2, 1, 1) model, the general 

equation is given by: 

1

2 1( )(1 ) ( )t tB B y B     (18) 
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Based on the model parameters, the final model for 

Philadelphia station is given by: 

1 2 3 11.787 0.928 0.141 0.968 0.009t t t t ty y y y e         (19) 
 

RESULT AND DISCUSSIONS 

The time series plot of original data and predicted 

data from the final models for both the stations are 

given in figure 1. This shows that the general trend 

is followed by predicted data to that of observed 

data. In the plot, the six years observed data 

followed by last one year predicted data for the 

both stations. 

 

 

 

 

Fig. 1. Time series plot of observed and predicted daily discharge at Berne and Philadelphia Stations. 

 

The scatter plots of these two stations are also given 

in figure 2. This shows that they are quite good 

models. The R
2
 for Berne station and Philadelphia 

stations are: 0.9901 and 0.9688 respectively. 

 

 
 

Fig. 2. Scatter plot of observed and predicted daily discharge at Berne and Philadelphia Stations. 

 

CONCLUSIONS 

Time series analysis for the river discharge shows 

that it is an important tool for modeling and 

forecasting. ARIMA (1, 1, 1) model is fitted for 

Berne station and ARIMA (2, 1, 1) is fitted for 

Philadelphia station. Both the stations are lies in the 

same rivers but they have different catchments 

coverage. So it should be noted that even the river 

is same, depending upon the catchments 

characteristics, applicable models are different 
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individual sites. The coefficient of determinations 

(0.99 for Berne and 0.969 for Philadelphia) shows 

that the model is useful for runoff forecasting. 
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